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20. Abstract (Cont'd)

processes, and an algorithm—including initialization—is presented that exhibits
consistent behavior for all target observer geometries examined. Experimental
studies are presented. Minimum norm solutions are provided during the initial
phase of the problem with convergence to a complete solution following observer
maneuvers resulting in the process becoming observable. Although emphasis is
given to the case of a single moving observer, the estimation algorithm is cap-
able of processing bearing information from multiple platforms.
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In the next section, a representation of the target-observer motion process
that is inherently linear in form is developed; this departs from past efforts
where linearization about the nominal or estimated target state is required.
Determination of the target position and velocity is then directly derived from
the application of linear estimation theory. Next, the properties of estimators
for '"piecewise observable' systems and the initialization of the recursive al-
gorithm are examined in detail. The practical implementation of the motion
analysis algorithm is then discussed, and experimental results are presented.

MODELING OF THE TARGET-OBSERVER DYNAMICS

A plot of the target and observer motion was shown in figure 2. The
discrete-time equation for the target state assuming constant velocity is given
by

, B B e
\T(l\+l) | s | \T(l\)—®(l\+1,l\)x,r(l\), (1)
MOR g O
E_o g0 3

where tg is the time increment between data samples, and ®(k + 1,k) is the
discrete transition matrix. The observer motion is unrestricted and given by

g SO R |
irO\(l\Fl) b= [ : ()!’ ; FOX(I\) | t ; O (I\ ())
= | . Z
1»rov(‘\+l) { LO 1 ? LT'O ]\) ! 1 ‘ (I\—‘
Equation (2) can be recast as - -
0 i AV . (k) |
(k+1) = @k+1,k)x (k) +Lr - i s (3)
*0 (@] | ‘ ‘
1 1| AV (k)
S5 O O
where
Avo(k) Vo (k+1) - \'O(ln (4)

is the incremental change in the observer velocity. The bearing to the target
is defined by the relation

tan B (k) Il‘,f,x(k) -r

)]/ [r K) - r K) 5
()\,(l)l |"l‘,\'(H IQ\'” ), )

53
)

de R i A Rt
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or, equivalently,
[rTx(k) - rOX(k)] cos B(k) - [rTy(k) - rOy(k)] sin B (k) = 0. (6)

The bearing measurements viewed by the observer are noise corrupted; that
is,

B ) = B(Kk) + ¥ (k), (M)

where V (k) is assumed to be a purely random sequence with zero mean and
variance 0, (k). When the measured bearing is used in place of the true bearing
in equation (6), this relationship becomes

[t ) =Ty (k)] cos B (k) - [rTy(k) - roy(k)l sin B (k)
= {[rTX(k) - rox(k)] cos B (k) - [rTy(k) - roy(k)] sin B (k) } cos V (k)
= P () = 1 (K)] sin B (k) + [y () - rov(k)] cos B (k) }sin V (k)

= - rg(k) sin V (k), (8)

where the last step results from substituting equation (6) and identifving the
quantity

rs(k) {rTx(k) - rOX(k)] sin B (k) + [r'Ty(k) - ro)'(k)] cos B(k) (9)

as the slant range between the target and the observer. Rearranging equation
(8) to isolate the unknown quantities yields

rox(k) cos Bm(k) - "O_\'(k) sin Bm(k)

r,rx(m cos Bm‘k’ - "'ry(k’ sin Bm(m + l‘s(k) sin V (k), (10)

where the left-hand side is available as a measurement. Defining

H(k) = I{IBm(k)] - [cos Bm(k) -sin Bm(k) 0 0] (11)

and
z(k) = H(k).\-o(m (12)

as the measurement matrix and measurement equation, respectively, equation
(10) assumes the compact form

72(k) = Il(k)x,,,(kh + 1M (k), (13)
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where the system dynamics are

\l"\-n Q’tl-\'l,knx,ltl\»; (14)

and where

Nk :’\Hu sinvk)=r llul/(k) (15)

represents the measurement noise, When the perturbations V (k) are Gaussian,
the statistics of N (k) are

x

M, (k) —_l—— J rq(k» sin V exp |- U—,, dv-=20, (16a)
T’ \//Zﬂ OU o 2 '_)U;
and ® 9
2 1 2 o i V-
on(lw - j B (k) sin™ V (k) exp |- —3 dv
NET Oy, 201/
_ 1.2 ” " 2 00 ol
5 To(k) {1 - exp| 20 y BT~ Tk, ®), (16b)

where M, (k) and cr (k) are the mean and variance of 71, respectively. Thus,
given equzﬁlons (13), (14), (15), and (16), the problem of determining the target
position and velocity (i.e., target state vector) from a history of noisy bearing

measurements

Z(K) = [2(k) z(k-1)...z(1)]" (17)
has the form of a linear state estimation problem. The problem is complicated,

however, by the fact that even for the noise-free situation the matrix pair
[®, H(k)] is unobservable during the first leg. That is, the matrix

k
L [HE PG K] (HO PG, K)]
i=1

is only positive semi-definite and does not achieve full rank until an observer
maneuver occurs (see appendix A).
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ESTIMATION OF TARGET STATES

The bearings-only motion analysis problem is stated as follows: Given
the vector-valued random process x(k) and observed random variables Z(k) =
[z(k) z(k-1)...2(1)]', find an estimate ?c(k!k) that minimizes the expected loss
E{L(¢€)) = E{L[[ X(k) - x(k)[ i; Y. Under assumptions that are consistent with
practical constraints and desired behavior, the optimai estimate is given by the
conditional expecmtion8

{klk) = Ex®)]Z2®)]. (18)

If the random processes are Gaussian, the conditional expectation is identical
with the orthogonal projection of x(k) on the measurement space . 10 How-
ever, if L(€) - €2 and the estimates are restricted to be a linear combination
of the measurement Z(k), then the optimal estimate is also the orthogonal pro-
jection. Thus, linear estimation is bettered by nonlinear estimation only if the ,
random processes are non-Gaussian and then only if third-order and higher 3
probability distributions are considered. 8 For the bearings-only motion anal-
ysis problem, V(k) is generally assumed Gaussian, and the near equality of
equation (15) holds for typical noise environments; thus, linear estimation
vields the optimal estimate for essentially all performance criteria. A unified
treatment on the theory of linear estimation is now presented.

LINEAR ESTIMATION
Given the dynamic system
x(k+1) = @(k+1, k)x(k) (19)
and measurement equation

z(k) = HK)x(K) + 1 k), (20)

the vector Z(k) of equation (17) can be written as

Z(k) = A(k)x (k) + N(k), (21) |
where
; H(k) —1
H(k-1)[®(k-1,k)] j
ARK) = | . (22) f
et |
CH(D [P, K)] |
6
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and

N(k) = [7 (k) nk-1)...7(D)]'. (23)
The penalty or loss assigned to state error defined by
: - 2,
L=E{|[x® - xk[k)]]
= trE {[x(k) - X(k[K)] [x&) - Xk[K]")
= trP (k) (24)
serves as a measure of the quality of the estimate, where tr[+] denotes the
trace of the matrix and P(k) is the error covariance matrix. This loss func-
tion is minimized when the state error [x(k) - .Q(klk)] is orthogonal to the
available data; that is,
E {[x(k) - X(|k)] Z'(k)} = [0] = null matrix. (25)
The state estimate assumes the form
R(k|k) = Bk)Z(K), (26)
where the linear combination of the measurements defined by the matrix B(k)
is to be determined. Substituting equations (21) and (26) into equation (25)
yields
P _WA' (k) - B)[AGKP (KA (k) + R(k)] = [0], @7)

where
R(k) = E[N(k)N' (k)]

2k 0 ’ : 0
on(k) &
2
0 k-1 0 " .
077( ) .
o 0 o - f
{
- : : . e (28)
o “ . 0

and where

P (k) = Elx(kK)x' (k)] - S(k, 0P _(0)%'(k,0) (29)

-~
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is the covariance matrix of x(k) without any measurement, and Py (0) is the
a priori covariance of the unknown vector or state. From equation (27), the
optimal value for the matrix B(k) is

B() - P_(A"(K)[R(k) + A(k)Px(k)A'(k)]_l
<9 & S
= [PX k) + A'(K)R “(KAK)] "A'KR " (k), (30)

where the last step results from the matrix inversion identity of equation (B-1)
presented in appendix B. Note that, if P (o) %I and R = [0]—or, equivalently,
R is finite and P (0) = lém 0 I, then

— @
B(k) - A'(0)[AK)A" (0] (31)

is the pseudoinverse of A(k) yielding a minimum norm solution for the unknown
x(k) for the underdetermined case (fewer equations or measurements than un-
knowns). 19 11 When the number of measurements exceeds the number of un-
knowns, the inverse in equation (31) no longer exists and one is forced to edit
the number of measurements to achieve a compatible system. If noise is
present (R # [0]), the identity in equation (30) holds and all the measurements
may be employed in extracting the estimates. Note that, if P;l = [0], implying
no a priori information, the relation

B(k) = [A'()R T (AR A KR (k) (32)

results, which yields the weighted least-squares solution for the overdetermined
case (more measurements than unknowns) 10,11 The transition between cases
is given by the general form of equation (30), which based on equations (21) and
(26), represents a "generalized' inverse of the matrix A(k). (The relationship
of B(k) to the standard generalized inverse or pseudoinverse, and sequential
estimation via the Kalman algorithm is treated in the next section. )

With the optimal estimator defined by equations (26) and (30), the error
covariance matrix in equation (24) becomes

l’(klk) Px(k) - B(k\A(k)I’x(l\') (33)
- - e ' (k -« < < '(k -1 { { -
=P ) - PLRIAK)RE) + AP A" (k)] ARP (),

where the first step utilizes the fact that the ophm'll value of x is orthogonal
to the state error and F {[x-X] [x- \]'\ - E{(x-%)x'} . By use of the matrix
inversion lemma equation (B-: ’)—qppon(h\ B, the optimal error covariance
matrix becomes

P(k|k) u);l(k) + AR o)L (34)
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Combining equations (34), (30), and (26) yields as the optimal estimate
&k|k) = POA OR™ R)Z(K). (35)

The updating of the state estimate Q(k]k), and its measure of quality
P(k]k), as new measurements become available is efficiently accomplished by
a recursive algorithm. Recasting equation (34) in the form

Pkl = PR + AR A GR), (36)

utilizing equations (22), (28), and (29), and noting that
H(k+1)
Aktl)y=-- - - - - -
LA(k)®(k, k+1)
permits the updating of the error covariance matrix to be expressed in the form

P (k+1 | k1) = [@(k+1,k)PX(k)<I>'(k+1,k)]-l

#1071 01, WA R L) AG)® ™ (ke 1, k)

+ Tl— H' (k+1)H (k+1)
077 (k+1)

. [é'(ku,k)]‘llp;l(k) + A" 0R T 0A®RS ke, k)

21 - H' (k+1)H(k+1). 37)

on(k+l)

&

Substituting equation (34) into equation (37) and invoking the matrix inversion
lemma (equation (B-2)) vields the computational convenient form

P(k+1]k+1) = Pk [k) - P(k+1]Kk)H' (k+1)

9 o
* I DPRRH (k41) + o (ke 1)) !

* H(k+1)P (k+1] k), (38)

where
P(k+1[k) = ®(k+1, k)P k[k) @ (k+1, k). (39)
9




Equation (39) represents the predicted value of the covariance matrix, and
equation (38), the corrected or updated value. Note that by direct expansion
of equation (36) it can be shown that

P (k) - {20k, 0P (0) (8,001}
k

+ Z 21
i1 0y ()

{HOSG, K1) {HOPG K]} . (40)

Observability assumes that the second term of equation (40) is positive definite.
However, as noted earlier for the single moving observer bearings-only motion
analysis problem, the observability of the matrix depends upon whether or not
an observer maneuver has occurred, This behavior and the problem of initial-
izing the covariance matrix are detailed in the next section.

From equation (35) the updated state estimate following a new measure-
ment is given by

x(k+1]k+1) = P+l k41)Ar (kt1)R™ L (k+1)Z (k+1)

P(k+1)]k+1)[H'(k+1) PO (k-1,K)A" (k)]

| “7
(k+1): F(I\+1)

_ﬁ__*___ - (41)
LO : R(k (‘J(k)

After some manipulation, the substitution of equation (38) into equation (41)
yields

S(k+1]k+1) = R(k+1]k) +K(k+1)[z(kH) - Hk+1)R (k+1]Kk)], 42)
where

R(k+1[k) = S(k+1, k)X (k[k) (43)

is the predicted target state, and the correction based on the latest measure-
ment is applied with gain

K(k+1) = P(k+1|k)H' (k+1) [H(k+1)P (k+1 |K)H? (k+1)+ gfl(km]'l. (44)

Equations (38), (39), (42), (43), and (44) are the Kalman-Bucy filter equations. —
This link between regressive least squares and Kalman filtering for observable
systems was established earlier by Bryson and Ho!3 and Fagin 4

10
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PROPERTIES OF LINEAR ESTIMATORS AND INITIALIZATION
OF THE RECURSIVE ALGORITHM

Given the set of simultaneous linear equations

Z(k) = Ak)x(k) + N(k), (21)

where without loss of generality it is assumed that the data arernormalized such
that E[NN'] = ¢ I, the general solution is classically given byl®

%ym-Awmmm+u-Aﬂmmmm; (45)

The matrix A" (k) is the pseudoinverse of the matrix A(k), and W is an arbitrary
vector. 15 The pseudoinverse of A (k) is defined by

Af(k) =[A" (KA (k) 1A" (k) (46)
when A'(k)A(k) is of full rank, and by
AT (k) = [A"(K)AK)]TA'(Kk) (47)

when the system is unobservable. Since A'(k)A(k) is symmetric, an
orthogonal transformation T exists such that

A'K)AK) = TAT', (48)
where
(A, 0 o . . 0|
| o )\2 0 " . 0
| 0 0 . .
A= | . 5 4 A 2 .
| .
BT & Lk
L0 0 . R N
|
| diagiAl (0] |
e (49)
Lo (0]

11
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where n is the number of states and q, is the degeneracy of A'(k)A(k). Thus,
the pseudoinverse of a symmetric matrix is defined by

[A'AK)]4=TA" T

ldiag‘;\l—} {0]
| i
=T \ ' T'. (50)

0 0
L_” (0]

The value of X given by equation (45) represents the best estimate, in a
weighted least-squares sense, to equation (21). This solution is unique when
A'(k)A(k) is nonsingular since, by equation (46), the second term in equation
(45) vanishes. When the process is unobservable, that is

k
det[A'(K)A(K)] = det £ [H(i) & (i,k)]'[H(i) (i, k)] =0, (51)
i-1

a (q,) parameter family of solutions for x(k) exists. However, even in this
case, particular types of solutions can be singled out by imposing additional con-
straints. A common selection, from the infinity of solutions, is that of the
minimum norm. Since the two vectors comprising the right-hand side of equa-
tion (45) are orthogonal, 10,15 the minimum norm solution occurs when W = [0],
and is given by

x(k) = A" (K)Z(Kk). (52)
In the motion analysis problem for the relative target state x, = x,,, - X,

this solution (i.e., equation (52)) yields the null vector during the entire first

phase (leg). However, under these conditions, a range-normalized solution is
often sought. From the foregoing discussions, it is clear that such a relative
motion solution must be derived from the second term in equation (45).

To compute ‘Ql q(k) sequentially, one employs

Rpst = PrgMA 9z k), (53)

where, in this case,
O = (A RAR] 54
Prgk) = AT RAR]. (54)

As with the processing of equation (34) in the preceding section, use of the
matrix inversion lemma is the key to the sequential updating of X(k [k) as new
measurements become available. However, until the number of measurements
equals the number of states and during the entire first leg of the single moving
observer problem the process is not observable and A'(k)A(k) is singular.
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Under these conditions, al%orlthms capable of generating the exact pseudoin-
verses are given by Cline.16 However, in this report, consideration is given
to the use of a positive matrix P_(k|0) in computing the inverse, that is,
approximate PLS(k) in equation é4) by

P(k|k) - = [P (k|0) " + AT(0A M)

PLS(k)

= ok 0[P H0]0) + &' (k 0)A' () ARD(K, 0] @'k, 0, (55)

where P(0|0) is large. Note that this form for P(klk) is directly achieved in

the development presented in the preceding section and results in the standard

Kalman computation, with P(0|0) representing the initial error covariance

matrix. The effect of P(O]O) on the computation of P(k) for the specific choice
2

P(0]0) = 0,1 (56)

is now examined.

Substituting equation (56) into equation (55) yields

P(k[k) = & (, 0) [ 15 1+ AL (0A (] (k, 0), (57)
%o
where A A(k) ® (k,0). Since A’l(k)Al(k) is symmetric, an orthogonal
transfor%‘natlon T1 exists such that
# 1% . : .
where
diagle,] ! (0]
I
————— ‘ — — - —
le : g &= Lyen » I = Qp.
I
1

Substituting equation (58) into equation (57) yields

P(klk) = & (k,0) T, (25 1+0,17'T3 &' (k,0)
(0

13
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2
ag ‘
= S RS B N e e e e s 'R T
| 1
r
(0] ke L
g g
ol e
| diag 1 B) I [O_ﬂ
w, fog ! |
! 1 g
| ' \
=& (k, 0) '1'1 """""" : S SR 'r'1 ®' (k,0). (59a)
1 o '
‘ (01 | 051‘

Separating the observable and unobservable components of P(k[k) permits
equation (59a) to be recast as

[ T i, e

p PP SR
et 2] ! |
L g B F
1 1
Sty = B e e e t & (Ir
I “\ ‘\\ CT.‘(]\,\ ) il I T1® (l\, 0)
|
10] | {0] |
‘,_ 1
B E n°({\ k [‘)] |
£g B BT T sk e 1 T} &' (k,0). (59b)

Since 5 . ‘ — _l
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it follows that

Pklk) = & (k,0)®' (k,0)[& (k, 0)®' (k, 0 + —1—,_, PLS(k)]_II
(2]
0

’L.s®

f)
+0-0 dK,0P"K,0[I - PLS(k) I’Ls(k)],

_ ol d s e L s
= Prgk) - P (B, 008 (k,0) + 5P (K] P (k)
o) 09
+og &k, 0)®' (k, 0)[I - A (k) Ak)]. (60)

Substituting equation (60) into equation (53) shows that the measurements are
indeed processed by a matrix that approximates A" (k). Specifically,

Pkloa® = A0y = A"m -4 P ®Iek, 0080k, 0) « 55 P k1A 0,
% % (61)

where use of the identity ATAA" = A has been made. Thus, the introduction of
| an appropriate nonsingular P(0]0) (specifically, P(0]0) = o%[ as detailed above
permits the standard recursive algorithm to be employed in the calculation of

the pseudoinverse matrix A”(k). The second term in equation (60) has no effect
on either the estimates or the Kalman gain since

1 = 2 ’
—QI’LS(I\)] PLS(I\)H'(I\).

3

Pk H' (k) = d(k, 0)®' (5, 0)[ & (k, 0)®'(k,0) +

The effect of P(O!O) on the estimates clearly depends on how closely A” approx-
imates,,A#. As a cautionary note, it should be pointed out that in selecting values
for o for initializing the computation of P(k), the choice of an overly large
value results in computational difficulties since the recursion formulas involve
the differencing of large quantities.

The optimal state estimate is defined by equation (42), which upon re-
grouping of the terms becomes

Xk +1|k+1) = [I - KHADHE&HD)I K1, K) ] (k K)+ K(k + 1)z(k+1). (62)




The general solution to equation (62) is

k
kklk) = o (k, 0%0[0) + T o, HKG2(), (63a)
j=1
where
o (k+1, k) = [I - K(k+1)H(k+1)]® (k+1, k). (63b)

It is shown in appendix C that

k ~
v ok, HKGz(G) = A (KZ(K),
j=1

]

o(k,0) = [I - AT(kAK) Pk, 0),

which allows equation (63a) to be recast as

x(klk) = A*(K)Z(k) + [1- ,\”(1<>(\<'.<’;]§(1<§(')». (64)

Thus, when the process is uncbservable, the minimum norm solution is
realized by initializing the recursive algorithm with %(0]0) = [0]. To obtain
other solutions, such as the range-normalized solution during the first leg of
ahe single moving observer problem, requires an appropriate selection of
%(0]0).

The relationship of the estimate x(k!k) with the classical least-squares
solution can be established by substituting equation (61) into equation (64) and
Shulis % s gy 5 S s
utilizing equation (45), where W= \'<k?H|. Specifically,

&by = & ity wks . T e A1 S (i A
x (klk) )‘LS(M = 2PI‘S(L)(«b(l-‘,mcp"l\, 0 +— PLSU\)] [.\Ls(k) - x(k|0)],
o) o (65)

where for observable systems lvmj l’[“\wlu [0] and :\x(k):\(k) = I. Thus,
the estimate of the Kalman-style algorithm asymptotically yields the pseudo-
inverse solution.

16
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APPLICATION TO THE MOTION ANALYSIS PROBLEM

This section is concerned with various state representations for the
motion analysis problem and the resulting estimation algorithms. For the tar-
get state x, the results of the preceding section apply directly and the esti-
mate is given by

§T(k+1[k+1) = SET(k+1 [K) + K(k+1)[z(k+1) - H(k+1)§T(k+1[k)] , (66)
where

)?T(k+1]k) = & (k+1, k),QT(ka).

This representation is preferred for the general problem of multiple observers.
However, for the single moving observer problem, the relative target state

r &)
- (k
= Py( )
Ve (k)
Vy (k)

is often of interest and equation (42) reduces to

QR(k+1lk+n - .QR(kHIk) + K (k1) [H(k+1)x 5 (k+1) - H(K+1)§T(k+1]k)]

= %R(kﬂ |k) - K(k+DH(R DR (k41 [k), (67a)
where the predicted state is given by

0

%R(k+llk):<l>(k+1,k)§ |k) - AV, (k). (67h)
I

R(k

A
The estimated target velocity veetgr Ve (k+1 lk+1) can be obtained by adding
observer velocity components to Vx(k+1[k+1) and V (k+1 fk+l); that is,

" A A

] o > 4 > - r

\Tx(l\+1]k+l) ! v (k+1[k+1) . Vo k+1) =

A A A . C
LY'I'.V(kH [k+1) 0, et [Kk+1) Voy &+

The relationship between the various estimates is illustrated in figures 3a
through 3¢, where the covariance and gain matrices are generated via equations
(38) and (44), respectively. The recursive estimation of the relative target
state xR(k) is summarized in table 1.
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X1 (

L ESTIMATOR

Kp(kel] x)

- Tpx(K)
O—

wivn | fem|]
lz" L |
i |
:
|
________ o

Figure 3a. Block Diagram of Observer Dynamics, Measurement
Equation, and Estimator for Unknown Target State x7(k)
(Also Shown is Relative Target State xg(k) = xp(k) - xg(k))

xg (k)

Y
::{‘”“""ﬂ" L(p(m,.j

o

X
R

ko 4

A
x_ (k4! | kel) - A
‘T [ lR(lII)

A
Xy(k|k)

d (x4l ,k)
(k41| k)

Figure 3b, FEquivalent Block Diagram of Figure 3a

X (K+l [ k+1)
@—M K(k+l) &::L@ R z

- QR(klk)

* +
H{k+1) "——h

X (k
xR (k+] k) ud

¢.|’k) }—

Iy

.= AV (k)

Figure 3c. Block Diagram of Estimator for xp(k) Resulting from

Simplification of Figure 3b
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Table 1. Summary of the Recursive Estimation of the
Relative Target State xp(k)
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IState Vector:

xgl) = [r () ro) Vi) VK] (1-1)
|Initialization:* ‘
A — A o A 1 -
xR(OIO) = [},0) sinB_(0) F_(0) cos B_(0) 0] (1 z)1
P(0[0)=051, where o% = constant (1~3)i
Predicted State: |
|
A g 8 0 1 ® 1
xR(k+1[k) = d>(k+1,k)xR(k[k) - AV, (k) (1-4)]
0 0 0 1 {
|
Predicted Covariance Matrix: I
P(k+1]k) = ®(k+1,k)P(k|k) ®' (k+1, k) (1-5)
{
Measurement Matrix: |
H(k+1) = jcos B (k+1) -sinB_(k+1) 0 0] (1-6)|L
Gain Matrix Computation:
K(k+1) = P(k+1|Kk)H'(k+1) [H(k+1)P(k+1 | K)H' (k+1) + rz(k+1)05(k+1)]_1 (1-7)
| Updated State: t
Rpct1]ke1) = K (et [K) - Kkt DH(k+1)R p (k+1] k) (1-8)|
Updated Covariance Matrix:
P(k+1 |k+1) = [ - K(k+1)H(k+1)]P(k+1]k) (1-9)|
Target Parameters:
A /\2 A2 1//2
rs(k+llk+1) = [r‘((k+11k+1) + ry(k+1[k+l)] (1-10)
A i A A
(iT(k+1[k+1) E tzin'l(vTxa\-ufk:u/ Vrpy (k41 {k+/1 j1/2 (1-11)
Sp(k+1[k+1) = VA (k+1]k+1) +V,2I,v(k+1]k+1)]l‘2 (1-12)
Blc+1 ]+l = tan=L Ry (k1 o)/ B (ko1 k1)) (1-13)
*Initialization is discussed in the next section,
19
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IMPLEMENTATION OF THE SINGLE OBSERVER TMA ALGORITHM

The computation of the gain and covariance matrix in table 1 requires
knowledge of the slant range rg(k), which is initially unknown to the observer.
However, from equations (52) and (53) it should be noted that lack of knowledge
of the noise variance

2
o
n

o A 2 % 2 =
(k) I‘S(l\)O'V (k)

in the computation of P(k) does not preclude achieving an estimate. For ex-
ample, if the noise variance is assumed stationary, representing equal weight
on all data, a least-squares estimate results. Since the role of the noise var-
iance in the computations is to assign a weight to each measurement, a near-
optimal implementation can be realized when the range is slowly varying by
assigning a constant value for rg(k). Introducing the normalized covariance
matrix PN(ka) such that

2, ;
P(k|k) rs(k)PN(k[k) (69)

permits equations (1-5) and (1-9) to assume the normalized form

ri(k) P (1 [K)H! (k) H(k+ 1P (k1] )
PN(k+llk+1) - ——— [P (k+1]k) - — =
ro(k+1) H(k+1)PN(k+1]k>H'(kJl)+0v(k+1)

Py (k+1 [K)H (k+1 JH(k+ )Py (k+1 lk)

A~ PN(k+1|k) - ' (70)

H(k+1)P *1]k)H'(k+1)+o§(k'l)

N(k

where

I)N(k+1[k) - (ku,k)pN(klk)@(kq,k),

(2,
and where o7 is the variance of the noise perturbing the bearing measurements,
and the last step in equation (70) is approximately satisfied for slowly varying
rg(k). Similarly, for the gain matrix, substitution of equation (69) into equation
(1-7) yields

P (k1 | k) H' (k+1)
K(k+1)

(71)

H(k+ )P (41| H! (ke 1)+ 07 (4 1)
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Thus, the computation of both P(k‘rlfl\') and K(k+1) is independent of target
range when PN(OIO) is chosen independent of r(0).

In the initialization of the state vector, it is seen from equation (65) that
imposing a minimum norm solution on the relative target state Xg = X - X
(i.e., setting .A\R(Ol()) [0]) results in the trivial solution QR(klkl [0] for all
k on the first leg. To generate a relative motion (range-normalized) solution,
it is observed from equation (1-8) that the gain matrix operates on the
"estimated'' cross-range residual; that is,

H(k),QR(kqu) ?\_(lwl]k; cos[B(k+1) + ¥ (k+1)] - {3\,1:\--:1 k) sin[8 (k+1) + V(k+1)]

A I : S Al :
-r(k+1]k) sin[B (k+1) - B (k+1|k) + V(k+1)]
-t(k+1]k) sin[ AB (k+1) + V¥ (k+1)]. (72)

Thus, if in the initial state estimate the relative velocity is zero, the solution
for .QR(k) is proportional to (or scaled by) the initial slant range estimate.
This is a desirable characteristic for the estimator, and the initialization of
the state estimate given by

[A G

r (0) sin B__(0)
S m

~

r (0) cos 0)
s\ Bm( :

<.(0]0
‘R( ) 0

lie 0

is used in this report. On the second leg, the system becomes observable;
thus, the second term in equation (45) fades and the significance of the initial
value for Ql{ diminishes. In the initialization oi the covariance matrix, exper-
imental studies have shown that the choice

P0]0) - o 1, (74)

> =
where 0“) r.(0), produces good results in realizing the «I(;sirod estimator

. Al . (O . . . b 2 . .
performance. From equation (69) it is seen that setting 06 r;(m 1s equiva-
lent to initializing )

I’N(()I()b I (75)

This initialization can be shown to generate weights on new data in a manner that
takes into account the size of the bearing change between samples in relation to
the bearing error due to measurement noise, I The normalized algorithm, in-
cluding initialization, is summarized in table 2,

21
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Table 2. Summary of the Normalized Recursive Algorithm

(State Vector:

. - - . , - 7 V2 , 9
xpl) - [r (k) ly(l\) Ve V)] (2-1)
Initialization:
, .Q-R(o]m |?S(0) sinB_(0) i‘-s(o) cosB_(0 0 O] (2-2)
> (0]« o
| I N(u] =1 (2-3)
| Predicted Estimate: i i
. | t ol 0 0 1 0 |
X, (k+1|k) = ®(k+1,k)x,(k|k) - AV _ (k) (2-4)!
R R P e 6 |
Predicted Covariance Matrix: |l
PN(kH[k) <I>(k+l,k)PN(kII\')CIJ'(l\'H,k) (2-5\?
Measurement Matrix: :
Hk+1) - fcos 8 (ke1) =-sinB_(k+1) 0 0] (2—6)E
| Gain Matrix Computation:
| ) = |
J K(k+1) - PN(kfllk)H'(I\w1)[H(k+1)PN(k+l]I()H'(k+1)+ o, (k+1)] 1 (27|
{ {
| Updated State: i
A A = A 0 |
‘ XR(I\'&llk!l) xl{(k"1[l<) - l\(k+l)H(k+l)xR(k+l) (2-8)|
? Updated Covariance Matrix: l
Pw(knlke 1) = [I - K(kH)H(kU)]P\I(kH]k) (2-9)
i Target Parameters:
! USSR ST [?j(k-o 1[k+1) + 'r\‘i(k»' 1]k+1)1/2 (2-10)
] . P, D
Cokt 1]kt 1) = tan™ V[V (ki | ke 1)/ Vo (kt1] ke 1) (2-11)
T t < < Tx 1K / T)’ 35 <
8 | (52 N2 1/2
| Splked[ke) ;v,l\(ku]km ’ V,rv(k+1]k+1)] ; (2-12)
| A = :
t B(k‘llk‘ 1} = tan 1[?‘(k+1lkrﬁrl)/ﬁv(kdllkél)] (2-13)
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PROPERTIES OF THE TMA SOLUTION

The convergence of the recursive solution (Kalman) to the least-squares
estimate as the number of measurements increases — see equation (65) —
permits the behavior of the linear TMA estimator to be discussed in terms of
the idealized estimate of equation (45). Note that the measurement matrix A(k),
defined by equation (22), is a function of the measured bearing and hence the
measurement noise p(k). It is shown in appendix A that under noise-free
conditions A'(k)A(k) is singular over the entire first leg. Since for the TMA
problem the minimum norm solution X(k) = A¥Z(k) is the null vector, the first
leg solution prior to an observer maneuver must be the second term of equation
(45). This represents the range-normalized solution.

In the experiments described in the next section this solution is indeed
observed under low-noise conditions. However, when the level of the measure-
ment noise is substantial, A'(k)A(k) becomes nonsingular even on we first leg;
and hence the factor [I - A7(k)A(k)] in equation (45) vanishes and the solution
for any initial conditions collapses toward the minimum norm solution. This
behavior appears to be abated in the low-noise case by preprocessing of the
data and approximate computation of A#(k). To demonstrate the consistency of
the first leg behavior when A'(k)A (k) is nonsingular, i.e., to show that the
addition of noise to the matrix A(k) does not alter system observability, recall
that the measurements are generated from the measured bearings and observer
position by equation (12): that is

z(k) - H(k)x()(k) H(k)xT(k) + n(k).
On the first leg,
Z(k) = [2(k), z(k=1), ..., z(D]" = AKX, (K), (76)
since observer velocity is constant. Consequently, the estimate is given by
X(kk) = A RIZK) + (1-A7 0)A (IR (K 0)

= A RARXK + AT RNK) - ATRAR)IRK]0)
AT R)AK)x (k) = [T - AT (KA K)1X(k [0)3 )

or, alternatively, the error on the first leg is

k (Kl = 11 - ATRAMRIX K - &6kl - AT RNk

23
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= xp(0) - ATRAKX () - (1 - ATR)AGRIX(K|0). (78)

When the level of noise is substantial, A'(k)A(k) becomes nonsingular; and

x (kk) = -A" (NG = x (k) - x (). (79)

(@]

Thus, prior to an observer maneuver, it is not possible to identify the complete
target state and the TMA estimate tends toward the minimum norm solution.
Following a maneuver, equation (69) has an additional term and the estimate
approaches the actual target state. The effect on the solution generated by the
algorithm of table 2 is given by equation (65) and can be shown to produce a bias
that fades as the number of measurements increases. Substituting equation (21)
into equation (45) yields

A p(kf9) = x (k) + AT (NG, (80)

which reveals an additional source of bias. Since both A”(k) and N(k) are
functions of the measurement noise v (k), the expectation of the second term is
non-zero. This bias is structural and not inherent in nature; it is a common
occurrence in parameter estimation problems in control theory, 18 and in the
linear prediction techniques of signal processing. 1
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EXPERIMENTAL RESULTS

Representative target-observer geometries were simulated on the AN/
UYK-7 computer in the Systems Analysis Laboratory at the Naval Underwater
Systems Center. White Gaussian noise with zero mean and 0.5° standard devia-~
tion was added to the data generated by the dynamic model as shown in figure 4.
Preprocessing of the target bearing was simulated by averaging twenty 1-second
samples to provide a bearing measurement for a single (moving) observer tar-
get motion analysis algorithm.

TARGET OBSERVER MODEL
Vo (1-SECOND SAMPLES)

ESTIMATOR
MEASUREMENT | (20-SECOND SAMPLES)

|
|
|
|
I
|
|
|
|
|
{
|
|

|
|
|
0BSERVER |
DYNAMICS |
EQUATION (3) |
v |
|
|
=i
TARGET B o BEARING (he1)
DYNAMICS |r voity. 4 TRACKER | | m
equation (| & 2 & sk mk Bl fee K <20 SEcONDS 001 07
| cesson] i)
6 | avgn)
! {
|
vr |
| |
| |

Figure 4. Simulation Diagram of Motion Analysis Svstem

The vehicle tracks for the first target-observer geometry considered are
shown in figure 5a. Both vehicles are traveling at a constant speed of 5.626
meters/second, and the observer traverses four 240-second legs involving
course changes of 90°. In this first example, instantaneous or point maneuvers
are used.

The relative motion plots of the solutions obtained on the first leg (shown
in figure 5b) demonstrate the property of the algorithm (summarized in table 2)
to provide solutions scaled by the initial range estimate under the conditions of
low measurement noise and no jitter in observer velocity. Figure 5c shows
the true and estimated target tracks for various initial range estimates. Note
that, as predicted, the dependency of the solution on the initial range estimate
fades rapidly once the process becomes observable. Figure 5d through 5g show
the behavior of the components of the estimated target state QR(k[k) as a function
of elapsed time. It should be noted that, on the second leg for the particular
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geometry considered, the vehicles are running parallel and the rate of change of
the bearing angle is zero. Under these conditions, except for the transient
immediately following the maneuver, no further improvement in the velocity
estimate along the line of sight is possible and this is reflected in figures 5d
and 5f. :

The target motion parameters often of interest are the range, course,
and speed. Plots of the range, course, and speed errors for the first example
are shown in figures 6a through 6¢ for two initializations (r(0) = 10, 000 meters
and r(0) = 0, which is the minimum norm solution). The errors via the appli-
cation of the extended Kalman filter (based on the linearization of equation (5)
about a nominal trajectory, see appendix D) are also shown for purposes of
comparison. Note the substantial course error and partial divergence of the
range solution that occurs on the second leg when the latter method is employed.
Fortunately, in this example, the situation is corrected following the next ob-
server maneuver.

Two other encounters are shown in figures 7a through 7d and figures 8a
through 8d. In both of these cases, the turning rate of the observer is con-
strained to 3°/second, This constraint represents the effect of finite thrust in
space applications or the restricted turning rate of hydrodynamic vehicles in
marine applications. In the second target-observer geometry (figure 7a), the
extended Kalman filter exhibited premature collapse of the covariance matrix
resulting in solution divergence. Such instability of the extended Kalman filter
solution in the target motion analysis (TMA) problem was first observed by
Fagin (see Murphy<). This instability, however, is fundamental to nonlinear
modeling and is aggravated in this particular application by the fact that the
estimated state used in the linearization process is not observable during the
critical initial period of the problem. 17 The modeling presented in this report
precludes this difficulty, Bias errors in the estimate did not appear significant
for the particular geometries and noise environment examined.
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Figure 5a. Vehicle Tracks for Target-Observer Geometry No. 1
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Figure 5d. Actual and Estimated Relative X-Position (ry) as
Function of Flapsed Time (Geometry No. 1)
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Figure 5e. Actual and Estimated Relative Y-Position (ry) as a
Function of Elapsed Time (Geometry No. 1) )
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Figure 5f. Actual and Estimated Target Velocity Along the
X-Axis (Geometry No. 1)
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Figure 5g. Actual and Estimated Target Velocity Along the
Y-Axis (Geometry No. 1)
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NOTE: ALL OWN SHIP MANEUVERS WERE MADE
WITH A 3°/ SECOND TURNING RATE.

TARGET SPEED = 11.252 METERS/SECOND

coooF OBSERVER SPEED : 5.626 METERS/SECOND

4000
TARGET

t =300
2000 —
t:634

OBSERVER

°
> \5

1 1 L
~ 6000 - 4000 -2000

v, (METERS)

Figure 8a. Vehicle Tracks for Target-Observer Geometry No. 3
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SUMMARY AND CONCLUSIONS

Bearings-only motion analysis is modeled in the form of a linear state
estimation problem when the measurements are generated from the bearing ob-
servations via equation (12). Implementation of equation (12) requires knowl-
edge of the emitter's bearing, location of the observer, and time of observation.
For the special case of a single moving observer, emphasized in this report,
the resulting dynamic process is unobservable on the first leg. The relationship
between recursive least-squares and Kalman filtering when the dynamic process
is unobservable is detailed. An estimation algorithm (table 2), including initial-
ization, is presented that exhibits consistent behavior for all iarget-observer
geometries examined. Minimum norm solutions are provided on the first legof
the problem; and convergence to the complete solution is achieved following
maneuvers by the observer that result in the dynamic process becoming observ-
able. Convergence of the estimate of target state is dependent upon the velocity
variation undertaken by the observing vehicle. No attempt was made in this
report to optimize the observer maneuvers to improve convergence. This is an
area foiu further study.

Since the gain and covariance matrices are dependent only upon the meas-
ured bearings, changes in target velocity have the same effect on these quanti-
ties as observer maneuvers. Thus, evasive action by the target can produce
false solutions and convergence of the covariance matrix. Random perturbation
in the target velocity can be handled by the addition of plant noise to the model
of equation (1). When the heading changes undertaken by the observer are suf-
ficiently large, the angle tracking may require new antenna systems; and the
problem is further complicated by the addition of bias errors introduced be-
tween the data legs. The more general three-dimensional problem using addi-
tional passive sensor inputs is currently under study.
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APPENDIX A
OBSERVABILITY OF THE NOISE-FREE TARGET-OBSERVER PROCESS

To provide insight to the behavior of the bearings-only motion analysis
problem, the observability of the noise-free case is examined. Observability
for time-varying systems requires that the n xn matrix

k
L [HO® Gk HD PG K)] = A'KAK) (A-1)
i=1

be positive definite. Since the rank of the product of matrices cannot exceed
the rank of individual matrices, that is,
Rank (AB) s Rank (A) or Rank (B), (A-2)
Rank (A'A)j = Rank (4), (A-3)

the system is unobservable if the rank of A(k) is less than the number of states,
which is four in the two-dimensional motion analysis problem. From equations
(1), (11), and (22) we have

—

Hk)
H(k-1)® (k-1,k)
H(k-2)® (k-2, k)

A(k)

lH) D, k)
(cos B (k) -sin B (k) 0 0

cos B(k-1) -sin B (k-1) -tscos B (k-1) tssin B(k-1)
cos B(k-2) -sin B (k-2) -2ts cos B (k-2) 2tssin B(k-2)

= . (A'4)

cos B (1) -sin B (1) —(k-l)tscosﬁ(l) (k-l)tssin B(IJ

 —
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If the bearing rate is zero, implying B (k+1) = B(k), then the first two columns
and the last two columns of the matrix in equation (A-4) are linearly dependent
and the rank of A(k) is two. Physically, this implies that it is not possible to
determine the slant range of the target and the component of the relative velocity
VR = Vp - VO along the line of sight. For the case where the single moving
observer is traveling at constant velocity and dfB/dt # 0,the rank of A(k) can
be shown to be three. To determine that the matrix A(k) does not achieve full
rank prior to observer maneuvers, note from equations (12) and (13) that in

the noise-free case

H(k)x (k) = [0], (A-5)

where the behavior of the relative target state (constant observer velocity) is
defined by

,\'R(k+1h ® (k+1, k)x, (K). (A~6)

R

By comparing equations (A-5) and (A-6) with equations (19) and (20), one ob-
tains an equation that is similar to equation (21); that is,

:\(kt\HtI\;a [of, (A=T)

or

.-\'<k).'\(kwndw [0]. (A-8)

It is clear that in order for equation (A-5) to be satisfied, either the trivial
solution xp(k) - [0] is unique or A(k) is not of full rank, in which case non-

trivial solutions XR(k) # 0 exist., However, from equation (5) one has
V I (0)
X X
B () - tan~l ————
( V_,+r (0)
yt ¥
’\.\ \.\'
pon b | S Rt U A : Aot
tan T T in B(0)}, T B(0) 7 (A-9)
S S

/

and it is clear that a one-parameter family of solutions, scaled by rg(0),
exists. This situation is illustrated in figure A-1. Consequently, the rank of
the matrix A'(K)A(K) is not equal to four, and the system is not observable
during the first phase (leg) of the bearings-oniyv motion analvsis problem. For
the system to become observable, an additional linecarly independent measure-
ment is required; this is realized by a change in the velocity of the observer
(i.e., by an observer manecuver),
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APPENDIX B
MATRIX INVERSION IDENTITIES

Given the n x n positive definite matrix P, the m xn matrix A, and
the m x m positive definite matrix R, then
PA'[R + APA'|"L = (p-1 + A'R 1A 1A'RTL, (B-1)
and

(P! + ar A - p - PA'R + APA'T AP, (B-2)

Proof:

1. Pre- and post-multiply equation (B-1) by the nonsingular matrices
(P~1 + A'R-1A] and [R + APA'], respectively.

2. Substitute equation (B-1) into (B-2), vielding,

ik

Pl eartat o po el artla AR AR,

and pre-multiply by the nonsingular matrix [P_l B A'R-lA].

B-1/B-2
Reverse Blank
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RECURSIVE COMPUTATION OF THE MINIMUM NORM SOLUTION

Given the state transition matrix

¢ (k+1,k) = |I - K(k+1)H(k+1)]® (k+1,k)

(C-1})

of the optimal estimator, the optimal gain matrix K(k), and the history of

measurements Z(k) - [z(k) z(k-1)...z(1)]", then

k N~

T ¢k, )HKGz() - AT (K)Z(K), and
j:1 ~

0(k,0) = [I - A"K)AK)]SK,O).
Proof:

1. Rewrite equation (C-1) in the form
¢ (k+1,K) = [1- Kk+1)HE&DIP A [P k1K) @ (k+1, k).
Utilizing the relations
P(k+1]k+1) = [T - K(k+1)H(k+1)]P(k+1 |k),

& (k+1,k) - Bk, k+1),

and o T =i
P (k1K) - @ (k, k+ )P (k| k) D (k, k+1),

the optimal state transition matrix can be expressed as

¢ (k+1,k) = P(k+1]k+1) @' (k, k)P~ Lk [K),
or
8 &, §) - Pkl G 0P G,
for all values of j. Since

K(j) - mjljm'm/of.

(C-2)

(C-3)

(C-7)

(C-8)

(C-9)
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the product @ (k, j)K(j) is given by

- £y
8 (k, HK() = Pk|k) ®'(j, k)P 1(jlj)P(Jlj)H'(j>”0;

'— P<k1k>¢'<i,km'u>/of. (C-10)

Substituting equation (C-10) into the left-hand side of equation (C-2) and ex-
panding yields

k A} - A} o= Al _ - e
I ¢ (s, )KG)z() = Pl TL2E 2L R Dage])

J=1 (o

k Y2
L P k-2, K)H" (k-2)2(k-2) |
2

L€', kH (DHz(1)
& 9
Ok s o

&

1

= P(kK)A'(K)Z (k). (C-11)

Substitution of equation (61) into equation (C-11) completes the proof.
2. Setting j = 0 in equation (C-8) yields
&k, 0) = Pk|kya' (0,k)P L(0/0). (C-12)
Since P-I(OIO) = @'(k, o>p;1 (k 0)®(k, 0), it follows that
#k, 0) = PP (k[0)(k, 0)

- 2P<k|k)[P;1 (<lo) + 41094091 - Pk 1A' (A G0k, 0)
(C-13)

Substituting equation (55) into equation (C-13) and recognizing that 1:# =
P(kik)A'(k) yields

~

ak, 0) = [1- A (RAK)]G(K,0). (C-14)
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APPENDIX D

SUMMARY OF THE APPLICATION OF THE EXTENDED
KALMAN FILTER TO THE MOTION ANALYSIS PROBLEM

A summary of the application of the extended Kalman filter to the bearings-

only motion analysis problem is presented as follows:

State Vector:

x(k) = [r (k) ry(k) v, (k) \.\'(k” (D-1)
Initialization:
A | A 2 A e Iy s X7 A 6
X(0]0) [rS(O) sin Bm(()) rg(()) Ccos 3m(0) \Ox(l\) \Oy(k)] (D-2)
2 0 o 0 | |
OI'.\'
92
0 G 0 0
P(0]0) = L (D-3)
0 0 Oy 0
2
K 0 0 oy
Prediction:
S(k+1]k) = @ (k+1,k)x(k|Kk) (D-4)
P(kt1]k) = & (k+1,k)P(k |k) @' (k+1, k) (D-5)
Bk+1|k) tan-ll?‘((kﬂ[k)/?v(k+1lk)] (D-6)
9 2 : /
P (k+1]k) - [ro(k+1]k) + £ (+1 k)] . (D-T7)
S X y
Measurement Matrix Linearization:
- N > ~
H(k+1) ;li % ;—\-i {\\:5 A (D-8)
x Tty PVtx Ty x(k+1) = X(k+1]k)
where
;iL cos B (k+1|k)/ x,‘\g(kJ 1]k (D=9
Y ox(k+1) - {k+1]k)
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%8
dr
: x(k+1)
. - S
dV
Tx
B
v 0
I'y

Gain_Computation:

A A
= -gin B(k+l[k)/rS(k+1 [k)

- R(k+1 k)

K(k+1) = P(k+1]k)H' (k1) (H(k+1)P(k+1]|Kk)H"(k+1) + 05|’1

Updating of Estimate:

A A A
X(k+1[k+1) = X (k+1]k) + K(B,, (k+1) - B (k+1]Kk)]

P(k+1|k+1) = [I - K(kH)H(k+1)]P(k+1|k)
= P(k+1[k) - P(k+1|k)H' (k+1)H(k+1)P(k+1|k)

« [H(k+1)P (k+1 | K)H' (k+1) + o;’; (k+1)]"1

Estimated Target Parameters:

c ¢ /¢
Target Range - £ (k+1|k+1) - [?i(kulkm + ?j(kﬂlkqnl' :

": b " = o //:
Target Course - (T(k+llk+1) - tan [VTx(k+l[k+l)/V,I,y(k41[k41)]

A
Target Speed - ST(k+llk+l) [V

02
T

(k+1]k+1) + V2 (k+1|k+1))}
X Ty

(D-10)

(D-11)

(D-12)

(D-13)

(D-14)

(D-15)

(D-16)

(D-17)

(D-18)
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